Appendix: Orthogonal Curvilinear Coordinates

Notes:

Most of the material presented in this chapter is taken from Anupam, G. (Classical Electromagnetism in a Nutshell 2012, (Princeton: New Jersey)), Chap. 2, and Weinberg, S. (Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity 1972, (Wiley: New York), Chap. 8.

We define the infinitesimal spatial displacement vector $d \mathbf{x}$ in a given orthogonal coordinate system with

$$
\begin{equation*}
d \mathbf{x}=d x^{i} \mathbf{e}_{i} \tag{II.1}
\end{equation*}
$$

where the Einstein summation convention was used, $d x^{i}$ is a contravariant component and \mathbf{e}_{i} is a basis vector $(i=1,2,3)$. The length interval $d s$ is thus given by

$$
\begin{align*}
d s^{2} & =d \mathbf{x} \cdot d \mathbf{x} \\
& =\left(d x^{i} \mathbf{e}_{i}\right) \cdot\left(d x^{j} \mathbf{e}_{j}\right) \\
& =\left(\mathbf{e}_{i} \cdot \mathbf{e}_{j}\right) d x^{i} d x^{j} \tag{II.2}\\
& =g_{i j} d x^{i} d x^{j} \\
& =d x^{i} d x_{i},
\end{align*}
$$

where the orthogonality of the coordinate system is specified by $\mathbf{e}_{i} \cdot \mathbf{e}_{j}=g_{i j}$ with the metric tensor $g_{i j}=0$ when $i \neq j$, and $d x_{i}$ is the covariant component. Please note that basis vectors are not unit vectors, i.e., $\mathbf{e}_{i} \cdot \mathbf{e}_{i} \neq 1$ in general. Equation (II.2) can be used to similarly define the inner product between any two vectors with

$$
\begin{align*}
\mathbf{A} \cdot \mathbf{B} & =g_{i j} A^{i} B^{j} \tag{II.3}\\
& =A^{i} B_{i} .
\end{align*}
$$

Since the covariant and contravariant components are generally different from one another in non-Cartesian coordinate systems, it is often more desirable to introduce a new set of so-called ordinary or physical components that preserve the inner product without explicitly bringing in both types of components or the metric tensor.

We start by rewriting equation (II.2) as

$$
\begin{equation*}
d s^{2}=\left(h_{1} d u^{1}\right)^{2}+\left(h_{2} d u^{2}\right)^{2}+\left(h_{3} d u^{3}\right)^{2} \tag{II.4}
\end{equation*}
$$

for the orthogonal coordinate system $\left(u^{1}, u^{2}, u^{3}\right)$. A comparison with equation (II.2) reveals that $h_{i}^{2}=g_{i i}$. For example, Cartesian coordinates have $h_{1}=h_{2}=h_{3}=1$, cylindrical coordinates (ρ, θ, z) have $h_{1}=h_{3}=1, h_{2}=\rho$, and spherical coordinates (r, θ, ϕ) have $h_{1}=1, h_{2}=r$, and $h_{3}=r \sin (\theta)$. Going back to equation (II.3) for the inner product, we now define the physical coordinates \bar{A}_{i} of a vector \mathbf{A} such that

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B} \equiv \bar{A}_{i} \bar{B}_{i}, \tag{II.5}
\end{equation*}
$$

where the use of subscripts has no particular meaning (i.e., a subscript does not imply a covariant component). A comparison with equation (II.3) implies that the physical components are related to the covariant and contravariant components through

$$
\begin{equation*}
\bar{A}_{i}=h_{i} A^{i}=h_{i}^{-1} A_{i} . \tag{II.6}
\end{equation*}
$$

The first thing we should notice is that the physical components allow the use of a unit basis $\hat{\mathbf{e}}_{i}$ since

$$
\begin{align*}
\mathbf{e}_{i} \cdot \mathbf{e}_{j} & =g_{i j} \\
& =h_{i} h_{j} \delta_{i j} \\
& =h_{i} h_{j}\left(\hat{\mathbf{e}}_{i} \cdot \hat{\mathbf{e}}_{j}\right) \tag{II.7}\\
& =\left(h_{i} \hat{\mathbf{e}}_{i}\right) \cdot\left(h_{j} \hat{\mathbf{e}}_{j}\right) .
\end{align*}
$$

In fact, we could have alternatively justified the introduction of the physical components by the desire to use a unit basis with

$$
\begin{align*}
d \mathbf{x} & =h_{1} d u^{1} \hat{\mathbf{e}}_{1}+h_{2} d u^{2} \hat{\mathbf{e}}_{2}+h_{3} d u^{3} \hat{\mathbf{e}}_{3} \tag{II.8}\\
& =d \bar{x}_{1} \hat{\mathbf{e}}_{1}+d \bar{x}_{2} \hat{\mathbf{e}}_{2}+d \bar{x}_{3} \hat{\mathbf{e}}_{3}
\end{align*}
$$

or in general

$$
\begin{equation*}
\mathbf{A}=\bar{A}_{1} \hat{\mathbf{e}}_{1}+\bar{A}_{2} \hat{\mathbf{e}}_{2}+\bar{A}_{3} \hat{\mathbf{e}}_{3} . \tag{II.9}
\end{equation*}
$$

It should now be clear that what we usually specify as coordinates (e.g., (ρ, θ, z) and $(r, \theta, \phi))$ correspond to the contravariant components of $d \mathbf{x}$, while the physical coordinates are those for which the components of $d \mathbf{x}$ have units of length (e.g., $(d \rho, \rho d \theta, d z)$ and $(d r, r d \theta, r \sin (\theta) d \phi))$.

We now define the different differential operators using the physical coordinates, starting with the gradient. To do so, we first consider the differential of a scalar function f

$$
\begin{align*}
d f & =\frac{\partial f}{\partial u^{i}} d u^{i} \\
& \equiv \nabla f \cdot d \mathbf{x} \\
& =\nabla f \cdot\left(\sum_{i} h_{i} d u^{i} \hat{\mathbf{e}}_{i}\right) \tag{II.10}\\
& =\sum_{i} h_{i} d u^{i} \nabla f \cdot \hat{\mathbf{e}}_{i},
\end{align*}
$$

which from the first and last equations implies that

$$
\begin{equation*}
\nabla f=\frac{1}{h_{1}} \frac{\partial f}{\partial u^{1}} \hat{\mathbf{e}}_{1}+\frac{1}{h_{2}} \frac{\partial f}{\partial u^{2}} \hat{\mathbf{e}}_{2}+\frac{1}{h_{3}} \frac{\partial f}{\partial u^{3}} \hat{\mathbf{e}}_{3} . \tag{II.11}
\end{equation*}
$$

This leads to the following relations for the cylindrical and spherical coordinate systems

$$
\begin{align*}
& \nabla f=\frac{\partial f}{\partial \rho} \hat{\mathbf{e}}_{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{\partial f}{\partial z} \hat{\mathbf{e}}_{z} \\
& \nabla f=\frac{\partial f}{\partial r} \hat{\mathbf{e}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{1}{r \sin (\theta)} \frac{\partial f}{\partial \phi} \hat{\mathbf{e}}_{\phi}, \tag{II.12}
\end{align*}
$$

respectively. For the divergence of a vector we consider an infinitesimal cube, as shown in Figure 1, and use the divergence theorem

Figure 1 - Infinitesimal volume of integration, where we do not differentiate between $d u^{i}$ and $d u_{i}$.

$$
\begin{align*}
\int_{V} \nabla \cdot \mathbf{A} d^{3} x & =\nabla \cdot \mathbf{A} h_{1} h_{2} h_{3} d u^{1} d u^{2} d u^{3} \tag{II.13}\\
& =\int_{S} \mathbf{A} \cdot \mathbf{n} d a
\end{align*}
$$

which for a small enough cube we can write as

$$
\begin{align*}
\int_{S} \mathbf{A} \cdot \mathbf{n} d a & =\left[\bar{A}_{1} h_{2} h_{3}\right]_{\text {right }}^{\text {left }} d u^{2} d u^{3}+\left[\bar{A}_{2} h_{1} h_{3}\right]_{\text {back }}^{\text {front }} d u^{1} d u^{3} \\
& +\left[\bar{A}_{3} h_{1} h_{2}\right]_{\mathrm{bottom}}^{\text {top }} d u^{1} d u^{2} \tag{II.14}\\
& =\left[\frac{\partial}{\partial u^{1}}\left(\bar{A}_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial u^{2}}\left(\bar{A}_{2} h_{1} h_{3}\right)+\frac{\partial}{\partial u^{3}}\left(\bar{A}_{3} h_{1} h_{2}\right)\right] d u^{1} d u^{2} d u^{3},
\end{align*}
$$

since in general h_{i} can vary across the dimensions of the cube. A comparison with equation (II.13) reveals that

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u^{1}}\left(\bar{A}_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial u^{2}}\left(\bar{A}_{2} h_{1} h_{3}\right)+\frac{\partial}{\partial u^{3}}\left(\bar{A}_{3} h_{1} h_{2}\right)\right] . \tag{II.15}
\end{equation*}
$$

We then respectively have for cylindrical and spherical coordinates

$$
\begin{align*}
& \nabla \cdot \mathbf{A}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \bar{A}_{r}\right)+\frac{1}{\rho} \frac{\partial \bar{A}_{\theta}}{\partial \theta}+\frac{\partial \bar{A}_{z}}{\partial z} \tag{II.16}\\
& \nabla \cdot \mathbf{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \bar{A}_{r}\right)+\frac{1}{r \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \bar{A}_{\theta}\right)+\frac{1}{r \sin (\theta)} \frac{\partial \bar{A}_{\phi}}{\partial \phi} .
\end{align*}
$$

The Laplacian is readily evaluated by setting $\mathbf{A}=\nabla f$ and inserting equations (II.12) in equations (II.16). We then have the corresponding relations

$$
\begin{align*}
& \nabla^{2} f=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \tag{II.17}\\
& \nabla^{2} f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2} f}{\partial \phi^{2}}
\end{align*}
$$

for cylindrical and spherical coordinates, respectively.
Finally, for the curl we use Stokes' Theorem using an infinitesimal surface as shown in Figure 2

$$
\begin{align*}
\int_{S}(\nabla \times \mathbf{A}) \cdot \mathbf{n} d a & =(\nabla \times \mathbf{A}) \cdot\left(\alpha h_{2} h_{3} d u^{2} d u^{3} \hat{\mathbf{e}}_{1}+\beta h_{1} h_{3} d u^{1} d u^{3} \hat{\mathbf{e}}_{2}+\gamma h_{1} h_{2} d u^{1} d u^{2} \hat{\mathbf{e}}_{3}\right) \tag{II.18}\\
& =\oint_{C} \mathbf{A} \cdot d \mathbf{l},
\end{align*}
$$

Figure 2 - Infinitesimal loop of integration for the derivation of the curl, projection in the $\left(u^{1}, u^{2}\right)$-plane.
where $\mathbf{n}=\alpha \hat{\mathbf{e}}_{1}+\beta \hat{\mathbf{e}}_{2}+\gamma \hat{\mathbf{e}}_{3}$. For this infinitesimal loop we can consider the different projections on the three $\left(u^{i}, u^{j}\right)$-planes and write (using the first two terms of the corresponding Taylor expansions)

$$
\begin{align*}
\oint_{C} \mathbf{A} \cdot d \mathbf{l}= & \alpha\left\{\left[\bar{A}_{2} h_{2}\right]_{\text {top }}^{\text {bottom }} d u^{2}+\left[\bar{A}_{3} h_{3}\right]_{\text {back }}^{\text {front }} d u^{3}\right\} \\
& +\beta\left\{\left[\bar{A}_{1} h_{1}\right]_{\text {bottom }}^{\text {top }} d u^{1}+\left[\bar{A}_{3} h_{3}\right]_{\text {left }}^{\text {tight }} d u^{3}\right\} \\
& +\gamma\left\{\left[\bar{A}_{1} h_{1}\right]_{\text {front }}^{\text {back }} d u^{1}+\left[\bar{A}_{2} h_{2}\right]_{\text {right }}^{\text {left }} d u^{2}\right\} \\
= & \alpha\left[-\frac{\partial}{\partial u^{3}}\left(\bar{A}_{2} h_{2}\right)+\frac{\partial}{\partial u^{2}}\left(\bar{A}_{3} h_{3}\right)\right] \tag{II.19}\\
& +\beta\left[\frac{\partial}{\partial u^{3}}\left(\bar{A}_{1} h_{1}\right)-\frac{\partial}{\partial u^{2}}\left(\bar{A}_{3} h_{3}\right)\right] \\
& +\gamma\left[-\frac{\partial}{\partial u^{2}}\left(\bar{A}_{1} h_{1}\right)+\frac{\partial}{\partial u^{1}}\left(\bar{A}_{2} h_{2}\right)\right] .
\end{align*}
$$

Equating equations (II.18) and (II.19) we must have

$$
\begin{align*}
\nabla \times \mathbf{A} & =\frac{1}{h_{2} h_{3}}\left[\frac{\partial}{\partial u^{2}}\left(\bar{A}_{3} h_{3}\right)-\frac{\partial}{\partial u^{3}}\left(\bar{A}_{2} h_{2}\right)\right] \hat{\mathbf{e}}_{1}+\frac{1}{h_{1} h_{3}}\left[\frac{\partial}{\partial u^{3}}\left(\bar{A}_{1} h_{1}\right)-\frac{\partial}{\partial u^{1}}\left(\bar{A}_{3} h_{3}\right)\right] \hat{\mathbf{e}}_{2} \\
& +\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial u^{1}}\left(\bar{A}_{2} h_{2}\right)-\frac{\partial}{\partial u^{2}}\left(\bar{A}_{1} h_{1}\right)\right] \hat{\mathbf{e}}_{3} . \tag{II.20}
\end{align*}
$$

We then respectively write for the cylindrical and spherical coordinate systems

$$
\begin{aligned}
\nabla \times \mathbf{A} & =\left[\frac{1}{\rho} \frac{\partial \bar{A}_{z}}{\partial \theta}-\frac{\partial \bar{A}_{\theta}}{\partial z}\right] \hat{\mathbf{e}}_{\rho}+\left[\frac{\partial \bar{A}_{\rho}}{\partial z}-\frac{\partial \bar{A}_{z}}{\partial \rho}\right] \hat{\mathbf{e}}_{\theta}+\frac{1}{\rho}\left[\frac{\partial}{\partial \rho}\left(\rho \bar{A}_{\theta}\right)-\frac{\partial \bar{A}_{\rho}}{\partial \theta}\right] \hat{\mathbf{e}}_{z} \\
\nabla \times \mathbf{A} & =\frac{1}{r \sin (\theta)}\left[\frac{\partial}{\partial \theta}\left(\sin (\theta) \bar{A}_{\phi}\right)-\frac{\partial \bar{A}_{\theta}}{\partial \phi}\right] \hat{\mathbf{e}}_{r}+\left[\frac{1}{r \sin (\theta)} \frac{\partial \bar{A}_{r}}{\partial \phi}-\frac{1}{r} \frac{\partial}{\partial r}\left(r \bar{A}_{\phi}\right)\right] \hat{\mathbf{e}}_{\theta} \\
& +\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \bar{A}_{\theta}\right)-\frac{\partial \bar{A}_{r}}{\partial \theta}\right] \hat{\mathbf{e}}_{\phi} .
\end{aligned}
$$

