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Appendix: Orthogonal Curvilinear Coordinates 
 
Notes: 
Most of the material presented in this chapter is taken from Anupam, G. (Classical 
Electromagnetism in a Nutshell 2012, (Princeton: New Jersey)), Chap. 2, and Weinberg, 
S. (Gravitation and Cosmology: Principles and Applications of the General Theory of 
Relativity 1972, (Wiley: New York), Chap. 8. 
 
We define the infinitesimal spatial displacement vector dx  in a given orthogonal 
coordinate system with 
 
 dx = dxiei ,   (II.1) 
 
where the Einstein summation convention was used, dxi  is a contravariant component 
and ei  is a basis vector ( i = 1,2,3 ).  The length interval ds  is thus given by 
 

 

ds2 = dx ⋅dx

= dxiei( ) ⋅ dx je j( )
= ei ⋅e j( )dxidx j
= gijdx

idx j

= dxidxi ,

  (II.2) 

 
where the orthogonality of the coordinate system is specified by ei ⋅e j = gij  with the 
metric tensor gij = 0  when i ≠ j , and dxi  is the covariant component.  Please note that 
basis vectors are not unit vectors, i.e., ei ⋅ei ≠ 1  in general.  Equation (II.2) can be used to 
similarly define the inner product between any two vectors with 
 

 
A ⋅B = gijA

iB j

= AiBi .
  (II.3) 

 
Since the covariant and contravariant components are generally different from one 
another in non-Cartesian coordinate systems, it is often more desirable to introduce a new 
set of so-called ordinary or physical components that preserve the inner product without 
explicitly bringing in both types of components or the metric tensor.     
 
We start by rewriting equation (II.2) as 
 
 ds2 = h1du

1( )2 + h2du
2( )2 + h3du

3( )2   (II.4) 
 



II 

for the orthogonal coordinate system u1,u2,u3( ) .  A comparison with equation (II.2) 

reveals that hi
2 = gii .  For example, Cartesian coordinates have h1 = h2 = h3 = 1 , 

cylindrical coordinates ρ,θ , z( )  have h1 = h3 = 1 , h2 = ρ , and spherical coordinates 
r,θ ,φ( )  have h1 = 1 , h2 = r , and h3 = r sin θ( ) .  Going back to equation (II.3) for the 

inner product, we now define the physical coordinates Ai  of a vector A  such that 
 
 A ⋅B ≡ AiBi ,   (II.5) 
         
where the use of subscripts has no particular meaning (i.e., a subscript does not imply a 
covariant component). A comparison with equation (II.3) implies that the physical 
components are related to the covariant and contravariant components through  
 
 Ai = hiA

i = hi
−1Ai .   (II.6) 

 
The first thing we should notice is that the physical components allow the use of a unit 
basis êi  since 
 

 

ei ⋅e j = gij
= hihjδ ij

= hihj êi ⋅ ê j( )
= hiêi( ) ⋅ hjê j( ).

  (II.7) 

 
In fact, we could have alternatively justified the introduction of the physical components 
by the desire to use a unit basis with 
 

 
dx = h1du

1ê1 + h2du
2ê2 + h3du

3ê3
= dx1ê1 + dx2ê2 + dx3ê3

  (II.8) 

 
or in general 
 
 A = A1ê1 + A2ê2 + A3ê3.   (II.9) 
 
It should now be clear that what we usually specify as coordinates (e.g., ρ,θ , z( )  and 
r,θ ,φ( ) ) correspond to the contravariant components of dx , while the physical 

coordinates are those for which the components of dx  have units of length (e.g., 
dρ,ρdθ ,dz( )  and dr,rdθ ,r sin θ( )dφ( ) ). 

 
We now define the different differential operators using the physical coordinates, starting 
with the gradient.  To do so, we first consider the differential of a scalar function f  
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df = ∂ f
∂ui

dui

≡ ∇f ⋅dx

= ∇f ⋅ hidu
iêi

i
∑⎛⎝⎜

⎞
⎠⎟

= hidu
i∇f ⋅ êi

i
∑ ,

   (II.10) 

 
which from the first and last equations implies that 
 

 ∇f = 1
h1

∂ f
∂u1
ê1 +

1
h2

∂ f
∂u2

ê2 +
1
h3

∂ f
∂u3

ê3.   (II.11) 

 
This leads to the following relations for the cylindrical and spherical coordinate systems 
 

 
∇f = ∂ f

∂ρ
êρ +

1
ρ
∂ f
∂θ
êθ +

∂ f
∂z
êz

∇f = ∂ f
∂r
êr +

1
r
∂ f
∂θ
êθ +

1
r sin θ( )

∂ f
∂φ
êφ ,

  (II.12) 

 
respectively.  For the divergence of a vector we consider an infinitesimal cube, as shown 
in Figure 1, and use the divergence theorem 
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Figure 2.2. Curvilinear coordinates. (a) Two-dimensional illustration. (b) Integration regions for derivation of
expressions for divergence and curl.

For cylindrical coordinates (u1, u2, u3) = (r, u, z), related to Cartesian coordinates by x =
r cos u, y = r sin u, and z = z,

ds 2 = dr 2 + r 2du2 + dz2. (11.4)

Hence,

hr = 1, hu = r, hz = 1. (11.5)

All vector field derivatives can be written immediately once the scale factors are known.
We first quote all the results, and derive them later:

∇ f = 1
h1

∂ f
∂u1

e1 + · · · , (11.6)

∇ · A = 1
h1h2h3

[
∂

∂u1
(h2h3 A1) + · · ·

]
, (11.7)

∇ × A = 1
h2h3

[
∂

∂u2
(h3 A3) − ∂

∂u3
(h2 A2)

]
e1 + · · · , (11.8)

∇2 f = 1
h1h2h3

[
∂

∂u1

(
h2h3

h1

∂ f
∂u1

)
+ · · ·

]
. (11.9)

Here, Ai = A · ei , and the ellipses indicate terms that can be written down by cyclic
permutation of the indices 1, 2, and 3. These formulas apply to any orthogonal coordinate
system. Specific formulas for spherical polar and cylindrical coordinates can be obtained
by using eqs. (11.3) and (11.5), respectively.

The gradient: To derive eq. (11.6), consider a function f (r) at two neighboring points A
and B, which differ only in the u1 coordinate, as shown in fig. 2.2. It is then obvious that

d f ≡ f B − f A = ∂ f
∂u1

du1. (11.10)

Figure 1 - Infinitesimal volume of 
integration, where we do not 
differentiate between  and . 
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∇⋅Ad 3x

V∫ = ∇⋅Ah1h2h3du
1du2du3

= A ⋅nda
S∫ ,

  (II.13) 

 
which for a small enough cube we can write as 
 

 

A ⋅nda
S∫ = A1h2h3⎡⎣ ⎤⎦right

left du2du3 + A2h1h3⎡⎣ ⎤⎦back
front du1du3

+ A3h1h2⎡⎣ ⎤⎦bottom
top du1du2

= ∂
∂u1

A1h2h3( ) + ∂
∂u2

A2h1h3( ) + ∂
∂u3

A3h1h2( )⎡
⎣⎢

⎤
⎦⎥
du1du2du3,

  (II.14) 

  
since in general hi  can vary across the dimensions of the cube.  A comparison with 
equation (II.13) reveals that 
 

 ∇⋅A = 1
h1h2h3

∂
∂u1

A1h2h3( ) + ∂
∂u2

A2h1h3( ) + ∂
∂u3

A3h1h2( )⎡
⎣⎢

⎤
⎦⎥
.   (II.15) 

 
We then respectively have for cylindrical and spherical coordinates 
 

 
∇⋅A = 1

ρ
∂
∂ρ

ρAr( ) + 1ρ
∂Aθ

∂θ
+
∂Az
∂z

∇⋅A = 1
r2

∂
∂r

r2Ar( ) + 1
r sin θ( )

∂
∂θ

sin θ( )Aθ( ) + 1
r sin θ( )

∂Aφ

∂φ
.
  (II.16) 

 
The Laplacian is readily evaluated by setting A = ∇f  and inserting equations (II.12) in 
equations (II.16).  We then have the corresponding relations  
 

 
∇2 f = 1

ρ
∂
∂ρ

ρ ∂ f
∂ρ

⎛
⎝⎜

⎞
⎠⎟
+ 1
ρ 2

∂2 f
∂θ 2 +

∂2 f
∂z2

∇2 f = 1
r2

∂
∂r

r2 ∂ f
∂r

⎛
⎝⎜

⎞
⎠⎟ +

1
r2 sin θ( )

∂
∂θ

sin θ( ) ∂ f
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
r2 sin2 θ( )

∂2 f
∂φ 2

  (II.17) 

  
for cylindrical and spherical coordinates, respectively. 
 
Finally, for the curl we use Stokes’ Theorem using an infinitesimal surface as shown in 
Figure 2 
 

 

 

∇×A( ) ⋅nda
S∫ = ∇×A( ) ⋅ αh2h3du2du3ê1 + βh1h3du1du3ê2 + γ h1h2du1du2ê3( )

= A ⋅dl
C!∫ ,

 (II.18) 



V 

 
 
 
 
 
 
where n =α ê1 + β ê2 + γ ê3 .  For this infinitesimal loop we can consider the different 
projections on the three ui ,u j( )-planes  and write (using the first two terms of the 
corresponding Taylor expansions) 
 

 

 

A ⋅dl
C!∫ =α A2h2⎡⎣ ⎤⎦ top

bottom du2 + A3h3⎡⎣ ⎤⎦back
front du3{ }

+β A1h1⎡⎣ ⎤⎦bottom
top du1 + A3h3⎡⎣ ⎤⎦left

right du3{ }
+γ A1h1⎡⎣ ⎤⎦front

back du1 + A2h2⎡⎣ ⎤⎦right
left du2{ }

=α − ∂
∂u3

A2h2( ) + ∂
∂u2

A3h3( )⎡
⎣⎢

⎤
⎦⎥

+β ∂
∂u3

A1h1( )− ∂
∂u2

A3h3( )⎡
⎣⎢

⎤
⎦⎥

+γ − ∂
∂u2

A1h1( ) + ∂
∂u1

A2h2( )⎡
⎣⎢

⎤
⎦⎥
.

  (II.19) 

 
Equating equations (II.18) and (II.19) we must have 
 

 
∇×A = 1

h2h3
∂
∂u2

A3h3( )− ∂
∂u3

A2h2( )⎡
⎣⎢

⎤
⎦⎥
ê1 +

1
h1h3

∂
∂u3

A1h1( )− ∂
∂u1

A3h3( )⎡
⎣⎢

⎤
⎦⎥
ê2

+ 1
h1h2

∂
∂u1

A2h2( )− ∂
∂u2

A1h1( )⎡
⎣⎢

⎤
⎦⎥
ê3.

  (II.20) 

 
We then respectively write for the cylindrical and spherical coordinate systems 
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Figure 2.2. Curvilinear coordinates. (a) Two-dimensional illustration. (b) Integration regions for derivation of
expressions for divergence and curl.

For cylindrical coordinates (u1, u2, u3) = (r, u, z), related to Cartesian coordinates by x =
r cos u, y = r sin u, and z = z,

ds 2 = dr 2 + r 2du2 + dz2. (11.4)

Hence,

hr = 1, hu = r, hz = 1. (11.5)

All vector field derivatives can be written immediately once the scale factors are known.
We first quote all the results, and derive them later:

∇ f = 1
h1

∂ f
∂u1

e1 + · · · , (11.6)

∇ · A = 1
h1h2h3

[
∂

∂u1
(h2h3 A1) + · · ·

]
, (11.7)

∇ × A = 1
h2h3

[
∂

∂u2
(h3 A3) − ∂

∂u3
(h2 A2)

]
e1 + · · · , (11.8)

∇2 f = 1
h1h2h3

[
∂

∂u1

(
h2h3

h1

∂ f
∂u1

)
+ · · ·

]
. (11.9)

Here, Ai = A · ei , and the ellipses indicate terms that can be written down by cyclic
permutation of the indices 1, 2, and 3. These formulas apply to any orthogonal coordinate
system. Specific formulas for spherical polar and cylindrical coordinates can be obtained
by using eqs. (11.3) and (11.5), respectively.

The gradient: To derive eq. (11.6), consider a function f (r) at two neighboring points A
and B, which differ only in the u1 coordinate, as shown in fig. 2.2. It is then obvious that

d f ≡ f B − f A = ∂ f
∂u1

du1. (11.10)

Figure 2 – Infinitesimal loop of integration for 
the derivation of the curl, projection in the 

. 
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∇×A = 1
ρ
∂Az
∂θ

− ∂Aθ

∂z
⎡

⎣
⎢

⎤

⎦
⎥ êρ +

∂Aρ

∂z
−
∂Az
∂ρ

⎡

⎣
⎢

⎤

⎦
⎥ êθ +

1
ρ

∂
∂ρ

ρAθ( )− ∂Aρ

∂θ
⎡

⎣
⎢

⎤

⎦
⎥ êz

∇×A = 1
r sin θ( )

∂
∂θ

sin θ( )Aφ( )− ∂Aθ

∂φ
⎡
⎣⎢

⎤
⎦⎥
êr +

1
r sin θ( )

∂Ar
∂φ

− 1
r
∂
∂r

rAφ( )⎡

⎣
⎢

⎤

⎦
⎥ êθ

+ 1
r

∂
∂r

rAθ( )− ∂Ar
∂θ

⎡
⎣⎢

⎤
⎦⎥
êφ .

  (II.21) 

  


