Appendix: Orthogonal Curvilinear Coordinates

Notes:

Most of the material presented in this chapter is taken from Anupam, G. (Classical
Electromagnetism in a Nutshell 2012, (Princeton: New Jersey)), Chap. 2, and Weinberg,
S. (Gravitation and Cosmology: Principles and Applications of the General Theory of
Relativity 1972, (Wiley: New York), Chap. 8.

We define the infinitesimal spatial displacement vector dx in a given orthogonal
coordinate system with

dx=dx'e,, (IL.1)

where the Einstein summation convention was used, dx' is a contravariant component
and e, is a basis vector (i =1,2,3). The length interval ds is thus given by

ds® = dx - dx
= (dxiei)-(dxjej)
=(e, e, )dx'dx’ (11.2)
= gljdx"dxj
= dx'dx;,,

where the orthogonality of the coordinate system is specified by e, -e, =g, with the
metric tensor g, =0 when i# j, and dx; is the covariant component. Please note that

basis vectors are not unit vectors, i.e., €;-€; #1 in general. Equation (II.2) can be used to
similarly define the inner product between any two vectors with

A-B= g,inBj

| (IL3)
= A'B.

Since the covariant and contravariant components are generally different from one
another in non-Cartesian coordinate systems, it is often more desirable to introduce a new
set of so-called ordinary or physical components that preserve the inner product without
explicitly bringing in both types of components or the metric tensor.

We start by rewriting equation (I1.2) as

ds* = (hdu') +(hdu?) +(hdu’) (I1.4)



for the orthogonal coordinate system (ul,uz,u3). A comparison with equation (II.2)

reveals that h’=g,. For example, Cartesian coordinates have h =h,=h,=1,
cylindrical coordinates ( p,9,z) have h =h,=1, h,=p, and spherical coordinates
(r,0,¢) have h =1, h,=r, and h,=rsin(0). Going back to equation (I1.3) for the

inner product, we now define the physical coordinates A, of a vector A such that

A-B

AB, (IL.5)

where the use of subscripts has no particular meaning (i.e., a subscript does not imply a
covariant component). A comparison with equation (II.3) implies that the physical
components are related to the covariant and contravariant components through

A =hA =h"A,. (1L.6)

The first thing we should notice is that the physical components allow the use of a unit
basis €, since

€€=8
= h;h;0,
= hihj(éf 'éj)

=(ne,)-(he;).

(IL.7)

In fact, we could have alternatively justified the introduction of the physical components
by the desire to use a unit basis with

_ 1A 24 3A
dx=hdu e +h,du'e, +hdu’e,

. A ) (IL.8)
=dxe, +dx,e, +dx,e,
or in general
A=Ag +Ae, +Ag,. (IL.9)

It should now be clear that what we usually specify as coordinates (e.g., ( p,9,z) and
(r,0,0)) correspond to the contravariant components of dx, while the physical

coordinates are those for which the components of dx have units of length (e.g.,
(dp,pd,dz) and (dr,rd6,rsin(6)d¢)).

We now define the different differential operators using the physical coordinates, starting
with the gradient. To do so, we first consider the differential of a scalar function f

II



af d i

d
y= ou'
=Vf-dx
. (I1.10)
= Vf-(z h,.du’eij
= hdu'Vf -&,
which from the first and last equations implies that
Vf = 1 afA Lof, ,L19f, (IL.11)

+——e, +——2¢,.
h ' © hyou* * hyou’
This leads to the following relations for the cylindrical and spherical coordinate systems

BfA 18fA afA
\V} 9J
= op +p8 LRIFYAL

BfA lafA 1 afA
\Y% - ,
f= +1’89 9+rsin( ) 00 €

(IL.12)

respectively. For the divergence of a vector we consider an infinitesimal cube, as shown
in Figure 1, and use the divergence theorem
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Figure 1 - Infinitesimal volume of

integration, where we do not
differentiate between du' and du, .
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| V-Ad*x=V - Anhhdu'du’du’

(I1.13)
:J A -nda,
S
which for a small enough cube we can write as
[ Anda=[Ann]], didw’ +[Anh] 0 du'de’
+[ A, " du'du’ (IL.14)

| () < (A + = (R |

since in general h, can vary across the dimensions of the cube. A comparison with
equation (II.13) reveals that

0 - d [+ 0 [—
V-A= W‘:w(‘%hzhs)"’ a_(A2h1h3)+ _3(A3h1h2)] (IL15)

We then respectively have for cylindrical and spherical coordinates

VA:li(er)ﬁ_iaﬂ_}_%
pap p 00 0z (IL16)
1 9 1 0 — 1 0A '
V-A= r’A —(sin(0) A —2.
ol )+rsin(9)89(sm( ) ")+rsin(9) 99

The Laplacian is readily evaluated by setting A =Vf and inserting equations (II.12) in
equations (II1.16). We then have the corresponding relations

10 of 1 0°f Of
V== —
/ pap( ap]+pzaez+az2

. 1 ,3f 19 of 1 P
Vf_r ar( ar] r*sin(6 )89( n(e)ae)] r’sin’(6) 0¢”

(IL.17)

for cylindrical and spherical coordinates, respectively.

Finally, for the curl we use Stokes’ Theorem using an infinitesimal surface as shown in
Figure 2

VxA) nda=(VxA)- ahhduzdu + hhdudu ,+ hhdudue
Y

s (I1.18)

=gSCA-d1,
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h, du, u, = constant

U = constant

Figure 2 — Infinitesimal loop of integration for
the derivation of the curl, projection in the

(u',uz)-plane .

where n=oae, + e, +7ye,. For this infinitesimal loop we can consider the different

projections on the three (ui,uj )-planes and write (using the first two terms of the

corresponding Taylor expansions)

§ A d=c { (A, " du +[ A, ] du }
{ (A" du'+[Ah, ™ du }
{ An ! +[A0,]7 du }
[ 9 0 - 11.19
:a_ » —(A,n,)+ auz(A3h3)} (I1.19)
[ 0 J ,—
+B B —(Ah)- » 2(Ah)}

7| oo (A )+ () |

Equating equations (II.18) and (II.19) we must have
1 0 [+ 0 /- n 1|90 /= 0 /- n
VXxA= —(Ah ) —=—(Ah,) |, +——| =—= Al ) —=—( Ak, ) |€
| e @) s () o] s ) () e

1|0 /- d =\ |a
- 2Bk~ o

u

(I1.20)

We then respectively write for the cylindrical and spherical coordinate systems
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VxA=

rsin(@)

+1[§;(ﬂ£)—
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1 P(sin(e)zq,)—a—ﬂé,
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